
J. Fluid Mech. (2005), vol. 535, pp. 33–64. c© 2005 Cambridge University Press

doi:10.1017/S0022112005004532 Printed in the United Kingdom

33

Analytical evolution of tsunamis induced by
near-shore earthquakes on a constant-slope

ocean

By STEFANO TINTI AND ROBERTO TONINI
Department of Physics, Sector of Geophysics, University of Bologna, Italy

(Received 29 March 2004 and in revised form 24 January 2005)

Strong near-shore earthquakes are the most frequent sources of tsunamis in many
oceans of the world. In the framework of the nonlinear shallow-water theory, the
initial sea-surface tsunami elevation is assumed to equal the sea-floor co-seismic
displacement produced by the seismic event. This is quantified by means of the
analytical formulas due to Okada (1985, 1992), dealing with seismic faults buried in
an elastic medium. In this work the propagation of tsunamis is studied along two-
dimensional profiles on an idealized constant-slope sea bed, an approximation that
allows one to reduce the governing nonlinear equations to a linear problem by means
of the classical Carrier & Greenspan (1958) approach. We introduce an analytical
solution that is sufficiently general to account for initial conditions associated with
paradigmatic cases of sea-bottom deformations produced by near-shore earthquakes,
such as subsidence or uplift of the coastal area, and can be also used to treat more
complex deformations. The main result is that the amplification of the tsunami height
at the coast is found to range between approximately 1 and 2. The amplification is
around 1 for tsunamis induced by earthquakes with their epicentre inland and tends
to grow as the fault moves seaward. We restrict our analysis to earthquakes that
dislocate the shore region. Within the class of sources that we consider, the tsunamis
that are most amplified are the ones having initial profiles with a crest–trough–crest
system or conversely with a trough–crest–trough system. The bottom slope is found
to have no effect on tsunami run-ups and run-downs, but to influence tsunami periods
and tsunami speed remarkably. Breaking analysis shows that wave breaking does not
occur if the initial wave height is less than 8–9 m, and that the simplest sea-level
profiles, which are associated with earthquakes with their epicentre on land, are not
expected to break even if their initial height exceeds 19 m.

1. Introduction
The most frequent source of tsunamis is submarine earthquakes that offset and/or

deform the sea floor over very large regions, extending tens/hundreds of kilometres
in length and width. Often the seismic sources are in association with subduction
zones in deep ocean trenches that are far from the coasts, such as the Tonga and
Mariana trenches in the Pacific. But equally often the earthquakes occur only a few
tens of kilometres from coasts or in coastal regions where they may cause permanent
changes in the shoreline position as the effect of coastal subsidence and uplift. One
finds examples of tsunamigenic earthquakes that took place in near-shore zones in
various regions of the world.
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To stress the relevance of such occurrences, it suffices to mention here some recent
and significant cases of destructive events, all characterized by seismic deformations
involving the coast: the December 12, 1992 Flores, Indonesia tsunami, that was
produced by an Mw = 7.8 earthquake just off the northern coast of the island (Yeh
et al. 1993); the July 12, 1993 Okushiri, Japan tsunami, that was caused by an Mw = 7.8
earthquake in the Hokkaido-Nansei-Oki region in the Japan sea (Hokkaido Tsunami
Survey Group 1993; Shuto & Matsutomi 1995); the August 19, 1999 zmit Bay, Turkey
tsunami, that was set up by an Mw = 7.4 earthquake rupturing several segments of
the North Anatolian Fault with epicentre located near the coastal town of Gölcük
(Yalçiner et al. 2001; Altinok et al. 2001); and the June 23, 2001 Camana-Chala,
Peru tsunami, that was generated by an Mw = 8.4 shock, 110 miles west of Arequipa
in the Pacific Ocean earthquake (International Survey Team 2001; Geist et al. 2001).
Here, Mw is the moment magnitude as defined by Hanks & Kanamori (1979). In
some regions of the world, near-coast tsunamigenic earthquakes are by far the most
frequent sources of tsunamis. An example is provided by the Mediterranean sea,
where tsunami catalogues, going back more than 2000 years and probably complete
for the last four centuries, show that tsunamis produced by far sources are rare
(see Tinti & Maramai 1996, and Tinti, Maramai & Graziani 2004, for the Italian
tsunamis; Soloviev et al. 2000, and Maramai, Graziani & Tinti 2003, for tsunamis in
the Mediterranean and in other European seas).

In this paper attention is focused on the propagation of tsunamis generated in
the coastal zone. This subject has gained wide interest after recent episodes of
destructive events that have proven the damaging potential of local tsunamis, and
have also shown the need of devising more efficient means and methods to protect
coastal communities from their attacks (Preuss, Raad & Bidoae 2001). Our purpose
is to compute near-source tsunami evolution, as well as tsunami run-up and run-
down, and the corresponding tsunami penetration and withdrawal, in relation to the
characteristics of the co-seismic dislocation of the coast determined by the near-shore
earthquake. In order to gain basic physical understanding, we will make use of an
idealized bathymetry, namely a constant-slope sea floor, since this allows simplification
of the governing equations and of the consequent mathematical treatment, but implies
no loss of generality. And we will also consider only simple idealized seismic sources
that are capable of producing either uplift or subsidence of the near-shore sea bed,
or some slightly more complicated deformation pattern. The seismic deformations
of the sea bottom will be calculated through the analytical formulas deduced by
Okada (1992), providing the inner and Earth-surface displacements generated by a
rectangular uniform-slip fault buried in a homogeneous elastic half-space.

The tsunami propagation will be studied along transects perpendicular to the coast,
by using the two-dimensional nonlinear shallow-water approximation of the Navier–
Stokes hydrodynamic equations. The link between the co-seismic sea-floor displace-
ment and the ensuing tsunami is usually assumed to be that (i) the initial vertical
displacement of the sea surface is equal to the vertical displacement of the sea bottom
and (ii) the initial velocity of the sea water is zero everywhere. These assumptions
are justified by the consideration that co-seismic deformations take place over very
large areas (with typical length much larger than the local sea depth) and within a
very short time (seismic ruptures and disturbances travel much faster than tsunami
waves), and are widely accepted in all studies of tsunamis generated by earthquakes.
Conversely, they may be questionable for tsunamis caused by smaller-scale and slower
sources, such as submarine mass movements (Trifunac & Todorovska 2003). Based on
the approach devised by Carrier & Greenspan (1958), we have found a new analytical
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solution to the two-dimensional nonlinear shallow-water equations that is sufficiently
general to cover a wide variety of initial sea-surface profiles. We will use this solution
to treat the paradigmatic cases of initial sea-level depression and rise that are
associated respectively with sea-floor subsidence and uplift due to coastal seismic
sources.

2. Co-seismic deformation induced by coastal earthquakes
Earthquakes give rise to permanent deformations of the Earth’s surface that depend

on the focal mechanism and on the properties of the crust. In spite of the complications
of the seismic source and of the internal structure of the Earth, assuming a simple
geometry both for the source and the media has proven to be successful in providing
useful and practical assessments of the displacements. The most widely used set of
formulas is the one deduced by Okada (1985, 1992) that allows one to quantify the
displacements produced in a perfectly elastic half-space by a rectangular fault having
the upper edge parallel to the Earth’s surface, and with uniform slip distribution.
In this study we will only consider shear dislocations, which are appropriate for
earthquake sources. Furthermore, since we will restrict ourselves to a two-dimensional
analysis, we will take into consideration faults of infinite aspect ratio (i.e. with
infinite length and finite width), and with only a dip-slip focal mechanism (i.e.
with no slip component along the strike direction). Since Okada’s formulas are for
finite rectangular faults, some computations are needed to deduce the expressions
suitable for infinitely long faults; these are performed in Appendix A. A vertical
two-dimensional dip-slip fault produces a typical dipole pattern, with positive and
negative vertical surface displacements, which possesses an antisymmetric distribution
on the two sides of the fault. If the fault is offshore, the perturbation region is totally
or predominantly submarine, and the initial tsunami wave conserves the dipole
configuration. But if the source is close to the coast, or inland, then only part of the
dislocation involves the sea floor, and the antisymmetry of the pattern is destroyed.
Figure 1 shows that, depending on the relative positions of the seismic source and the
shoreline, the sea bottom can be affected by uplift only (or subsidence) with maximum
displacement taking place at the coastline or at some distance offshore, or it can be
affected by both uplift and subsidence. Okada’s formulas show that there is a linear
relationship between the displacement field and the amount of the offset on the fault’s
surface: therefore, varying the fault slip does not alter the co-seismic deformation
pattern, only its magnitude (figure 2a). On the other hand, the antisymmetric pattern
associated with a vertical fault (dip= 90◦) changes with the dip angle of the fault
(figure 2b): an inclined inverse (normal) fault produces surface displacement fields
with predominant uplift (subsidence). Since the sea bottom profile transfers to the
initial sea surface unaltered, we have to devise a tsunami model that can handle all
these cases. Fault parameters used to obtain the profiles displayed in figures 1 and 2
are listed in table 1.

3. Nonlinear tsunami theory in a two-dimensional space
Exact solutions to the nonlinear shallow-water equations for non-breaking waves

were found in 1958 by Carrier & Greenspan (1958, referred to herein as CG) under the
assumption of a sea bed with uniform slope. They were able to transform the problem,
involving linear momentum and mass conservation equations, into a single linear
second-order differential equation of hyperbolic type, and worked out some examples
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Figure 1. Plot of the vertical displacement of the Earth’s surface produced by a vertical fault
(dip angle δ = 90◦) in homogeneous ground. The fault has width W and its upper edge is at
depth D. The left block shifts upward and the right block shifts downward an equal amount.
The theory predicts an antisymmetric displacement field with respect to the fault plane. The
sea floor experiences vertical movements that depend on the relative position of the fault and
the coastline. If the shoreline is at position 1, the sea bed is uplifted with maximum uplift at
the shoreline. If it is at position 2, the shoreline does not move, but the coastal zone is tilted,
with the ocean floor uplifted and the land subsiding. If it is at position 3, the sea bed is both
uplifted at large distance offshore, and subsiding near-shore. In cases 1 and 3 the shoreline
position changes permanently.

Figure 1 Figure 2(a) Figure 2(b) Figure 4 Figure 4 Figure 4 Figure 4 Figure 4 Figure 4
Case 1 Case 2 Case 3 Case 4 Case 4 Case 4

Fault 1 Fault 2 Fault 3

Fault
Width (km) 10 10 10 10 10 10 7 22 5
Dip (deg.) 90 90 50, 70, 90 90 90 90 80 70 90
UEP(A)x (km) 0 0 0 1.90 0 −0.6 −0.95 1.82 0.05
UEP(A)z (km) 2.00 2.00 2.00 2.00 2.00 2.00 1.50 7.92 0.90
Slip(B) (m) 3.00 1, 2, 3 3.00 3.21 3.21 3.21 3.00 2.50 −4.40

Table 1. Fault parameters (A) The faults are rectangular surfaces with strike parallel to the
y-axis, and with the upper edge that is horizontal and of infinite length. They are symmetrical
with respect to the x-axis. UEP stands for upper edge position. The origin of the x-axis is
taken here to correspond with the position of the pre-earthquake coastline. The z-coordinate
is the depth and is positive downward. (B) The slip is the relative displacement of the two
sides of the fault, which each move by one half of the slip in opposite directions.

with specific initial-value conditions. Later, Spielvogel (1975) applied CG’s approach
to compute the amplification of a special class of waves that at the run-up time do
not possess kinetic energy and exhibit an exponential sea-level profile, and Synolakis
(1987) used CG’s theory to study the run-up of a solitary wave travelling over a
flat-bottom ocean and climbing over a constant-slope beach. Tadepalli & Synolakis
(1994) extended Synolakis’s analysis to cover N-waves with leading depression and
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Figure 2. Effect of (a) slip and fault dip (b) on the vertical co-seismic displacements. The
position and the dip of the faults are sketched in (c). According to the theory, displacements
depend linearly on the amount of the slip on the fault. Reversing the slip changes the sign
of the displacements, and uplift switches to subsidence and vice versa. The inclined faults are
thrust (inverse) faults with the headwall (left-side block) uplifting and the footwall subsiding.
Varying the fault dip breaks the antisymmetry of the vertical fault displacements: near-fault
uplift prevails over subsidence.

leading elevation. Recently, Carrier, Wu & Yeh (2003) reconsidered and modified
CG’s original approach and provided a general solution technique accounting for
arbitrary initial-value conditions, i.e. for arbitrary initial water elevation and velocity
profiles, and Kânoğlu (2004) contributed to the appropriate definition of the initial
conditions. The related techniques are semi-analytical, in that numerical integration
is needed to obtain a solution in the space and time domain.

In this section we will follow the basic philosophy of the original CG analysis,
which means that we will introduce new exact solutions to the problem. This will
enable us to use simple analytical formulas to compute the evolution of the elevation
and of the velocity fields, and all other quantities that have physical and engineering
interest, such as the displacement of the shoreline, the wave run-up and draw-down,
etc. Tsunamis are long water waves propagating in an ocean with depth negligible
compared to the wavelength, and can be described by the two nonlinear shallow-water
equations:

(v∗(η∗ + h∗))x∗ = −η∗
t∗, (3.1)

v∗
t∗ + v∗v∗

x∗ = −gη∗
x∗, (3.2)
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Figure 3. Plot of the constant-slope ocean and of the dimensional variables used. The
x∗-coordinates increase landward, and the post-earthquake shoreline is placed at the origin.
η∗

c is the instantaneous coastline position. The coastal earthquake produces a local permanent
change in the sea floor, but it is assumed here to have an extent too limited to affect the mean
sea level, which does not change.

where η∗ is the water elevation with respect to the mean sea level, v∗ is its horizontal
velocity, g is gravitational acceleration, h∗ = − bx∗ is the local mean depth, and x∗

is the horizontal coordinate. In still water, the coastline is located at x∗ = 0 and
the ocean is found in the region of negative x∗ (see figure 3). Let us introduce the
following dimensionless quantities:

v = v∗/v0, (3.3)

x = x∗/l0, (3.4)

η = η∗/bl0, (3.5)

t = t∗/T , (3.6)

where T = (l0/bg)1/2, v0 = (bl0g)1/2, b = tanα, α being the inclination of the slope (see
figure 3), and l0 is a characteristic length that can be determined for each specific
problem. After using the above scaling laws, the set of equations (3.1) and (3.2) can
be written in terms of the dimensionless variables as

(v(η − x))x + ηt = 0, (3.7)

vt + vvx + ηx = 0. (3.8)

3.1. From the nonlinear to the linear problem

Following CG, the fully nonlinear equations (3.7) and (3.8) in the space and time
dimensionless variables x, t can be converted into a linear problem in a new pair of
independent variables σ, λ by using the nonlinear hodograph transformation, defined
as follows:

v =
φσ

σ
, (3.9)

x =
φλ

4
− σ 2

16
− v2

2
, (3.10)

η =
φλ

4
− v2

2
, (3.11)

t =
λ

2
− v, (3.12)
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where φ(σ, λ) plays the role of a field potential. The following linear second-order
differential equation in terms of the water velocity v(σ, λ), defined in the plane (σ, λ),
is obtained after some mathematical manipulations:

σ (vσσ − vλλ) + 3vσ = 0. (3.13)

Analogously, one can deduce an equivalent linear equation for the potential φ(σ, λ),
that is

(σφσ )σ − σφλλ = 0. (3.14)

3.2. The initial-value problem

By virtue of the transformation law (3.12), it is easy to see that imposing that the
water velocity vanishes identically on the axis λ= 0 implies that the axis λ= 0 and
the axis t = 0 are exactly superimposed. Therefore, an initial-value problem in x and t

space with zero water velocity can be mapped to an equivalent problem in the plane
(σ, λ) in a straightforward manner. If the initial conditions are written as

v(σ, λ = 0) = 0, (3.15)

vλ(σ, λ = 0) = f (σ ), (3.16)

where f (σ ) is an arbitrary function, then a general integral solution can be found
both for v and for φ (see CG):

v(σ, λ) = σ −1

∫ ∞

0

J1(τσ ) sin(τλ)

(∫ ∞

0

σ 2
0 J1(τσ0)f (σ0) dσ0

)
dτ, (3.17)

φ(σ, λ) = −
∫ ∞

0

τ−1J0(τσ ) sin(τλ)

(∫ ∞

0

σ 2
0 J1(τσ0)f (σ0) dσ0

)
dτ. (3.18)

Here J0 and J1 are Bessel functions of the first kind and of order zero and one,
respectively.

At first sight, specifying the appropriate function f (σ ) for a given tsunami problem
seems to be not trivial, but the following considerations are of some help. After
differentiating both sides of equation (3.9) with respect to λ and both sides of
equation (3.11) with respect to σ , we obtain

vλ(σ, λ) = φσλ/σ,

ησ (σ, λ) = φλσ /4 − vvσ .

Then, combining them at λ= 0, we obtain the relationship

vλ(σ, 0) = f (σ ) =
4

σ
ησ (σ, 0), (3.19)

which shows the link existing between the function f (σ ) and the initial sea-surface
profile η(σ, 0).

3.3. The new exact solution

We find it convenient to consider the following form for the initial profile η(σ, 0), since
it will prove to be sufficiently flexible to represent relevant cases of initial sea-surface
disturbances due to near-shore earthquakes:

η(σ, 0) = (1 + σ 2)−3/2

3∑
k=0

ck(1 + σ 2)−k, (3.20)
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where ck are four arbitrary coefficients. We remark that expression (3.20) may be seen
as the generalization of a simpler form already analysed in CG. From equation (3.19),
we may easily compute the function f (σ ):

f (σ ) =
4

σ
ησ (σ, 0) = −8(1 + σ 2)−5/2

3∑
k=0

(
3
2

+ k
)
ck(1 + σ 2)−k, (3.21)

which can be substituted in the double integral of expressions (3.17) and (3.18) to
provide the solutions for the velocity v and for the potential φ. Details on the com-
putation of these integrals are given in Appendix B. Further, the analytical expression
for the water elevation η can be obtained by making use of the transformation law
(3.11). The analytical formulas we found can be written as follows:

v(σ, λ) = − 4

(
c0 +

c1

3
+

c2

5
+

c3

7

)
Im

{
1

(p2 + σ 2)3/2

}

− 4

(
c1

3
+

c2

5
+

c3

7

)
Im

{
3p

(p2 + σ 2)5/2

}

− 4

(
c2

5
+

6c3

35

)
Im

{
−1

(p2 + σ 2)5/2
+

5p2

(p2 + σ 2)7/2

}

− 4
c3

7
Im

{
−3p

(p2 + σ 2)7/2
+

7p3

(p2 + σ 2)9/2

}
, (3.22)

φ(σ, λ) = 4

(
c0 +

c1

3
+

c2

5
+

c3

7

)
Im

{
1

(p2 + σ 2)1/2

}

+ 4

(
c1

3
+

c2

5
+

c3

7

)
Im

{
p

(p2 + σ 2)3/2

}

+ 4

(
c2

15
+

2c3

35

)
Im

{
−1

(p2 + σ 2)3/2
+

3p2

(p2 + σ 2)5/2

}

+ 4
c3

35
Im

{
−3p

(p2 + σ 2)5/2
+

5p3

(p2 + σ 2)7/2

}
, (3.23)

η(σ, λ) =

(
c0 +

c1

3
+

c2

5
+

c3

7

)
Re

{
p

(p2 + σ 2)3/2

}

+

(
c1

3
+

c2

5
+

c3

7

)
Re

{
−1

(p2 + σ 2)3/2
+

3p2

(p2 + σ 2)5/2

}

+

(
c2

15
+

6c3

35

)
Re

{
−3p

(p2 + σ 2)5/2
+

5p3

(p2 + σ 2)7/2

}

+
c3

35
Re

{
3

(p2 + σ 2)5/2
+

−30p2

(p2 + σ 2)7/2
+

35p4

(p2 + σ 2)9/2

}
− v2

2
, (3.24)

where p = (1 − iλ). Equations (3.22)–(3.24) are complemented by a pair of expressions
that allows one to convert the solution from the coordinates (σ, λ) to the dimensionless
space and time coordinates x and t: namely, the relationship (3.12), linking t and λ,
and the relation between x and η that can be easily derived by combining (3.10) with
(3.11), that is

x(σ, λ) = η(σ, λ) − σ 2

16
. (3.25)
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One of the advantageous properties of the hodograph transformation is that in
the space (σ , λ) the shoreline is represented by the axis σ =0 at any time. Therefore,
putting σ = 0 in (3.22) and (3.24) allows one to compute respectively the instantaneous
velocity vc of the tip of the wave at the coast, as well as the instantaneous shoreline
elevation ηc (and accordingly the shoreline penetration). The explicit formulas are

vc(λ) = v(0, λ) = − 4

(
c0 +

c1

3
+

c2

5
+

c3

7

)
Im

{
1

p3

}
− 4

(
c1

3
+

c2

5
+

c3

7

)
Im

{
3

p4

}

− 4

(
c2

5
+

6c3

35

)
Im

{
4

p5

}
− 4

c3

7
Im

{
4

p6

}
, (3.26)

ηc(λ) = η(0, λ) =

(
c0 +

c1

3
+

c2

5
+

c3

7

)
Re

{
1

p2

}
+

(
c1

3
+

c2

5
+

c3

7

)
Re

{
2

p3

}

+

(
c2

5
+

c3

35

)
Re

{
2

p4

}
+

c3

35
Re

{
8

p5

}
− v2

c

2
. (3.27)

4. Results and discussion of elementary cases
In order to analyse the evolution of tsunamis generated by near-shore seismic

sources, some paradigmatic cases have been considered, and are illustrated in figure 4.
Case 1 is a vertical fault located inland at some distance from the shoreline causing
sea-bed uplift and downlift of the landward block (figure 4a). In case 2, the same
vertical fault is placed under the shoreline (figure 4b). In case 3 it is located slightly
offshore, which causes a narrow coastal belt of the sea floor to subside (with subsidence
peak at the coast), and the sea bed to be offset upward offshore (figure 4c). A more
complex coastal source is considered in case 4, where a dominant inverse two-segment
fault, placed under the seabed in the coastal area, is coupled with an ancillary surface
normal fault, further inland, to form a graben. The effect is an asymmetrical dipole
sea-bottom displacement profile: the coastal zone subsides with the subsidence peak
offshore, and the seaward sea floor is displaced upward (figure 4d). Since earthquake
sources are in the coastal region, the magnitude of the co-seismic displacements dies
out moving seaward, and the sea bed is practically unaffected offshore. In the examples
of figure 4, the seismic disturbance is almost negligible at distances larger than 75 km.
Notice further that the gradient of the vertical displacement is larger at the source
and becomes smaller and smaller as we move seaward. Formulas given in Appendix
A are used to compute the vertical co-seismic movements of the sea bottom. They are
derived from Okada’s (1985, 1992) model, which is valid for finite faults, by taking
the limit as the fault length goes to infinity. As the problem is two-dimensional, an
obvious consequence is that all the faults considered here are parallel to the coastline,
and give rise to tsunamis that hit the coast with normal incidence. Parameters of the
seismic sources are listed in table 1. The evolution of the tsunamis can be computed by
applying the formulas deduced in the previous section. Figure 4 portrays the initial
sea-surface profiles (open triangles) computed by using the four-term expression
(3.20) and by determining the set of coefficients ck (k =1, 2, 3, 4) that lead to the
best fit of the corresponding initial sea-bottom profiles (solid lines) resulting from
the application of the dislocation theory. The fit procedure is based on a simple trial
and error technique and gives satisfactory results. The coefficients estimated for the
four cases are listed in table 2. Note that, though co-seismic displacement profiles
decay offshore faster than the curves we compute for tsunami analysis, this does not
compromise the value of the results for the purpose of this study.
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Figure 4. Cases 1, 2, 3 and 4 are illustrated in (a)–(d) respectively. Each has two panels. The
upper panel displays the sea-surface vertical displacements induced by coastal earthquakes
computed through Okada’s model (solid line) compared to the best-fit curves obtained through
formula (3.20) (open triangles). The lower panel shows the constant-slope sea bed and the
position of the seismic fault. Cases 1–3 are associated with vertical dip–slip faults, that are
inland (case 1), beneath the coastline (case 2) and slightly offshore (case 3). Case 4 is associated
with a system of faults: a two-segment inverse fault (to the left) formed by fault 1 and fault 2
of table 1, and a small ancillary normal fault (to the right), that is fault 3 of table 1.

bl0c0 bl0c1 bl0c2 bl0c3

Case 1 4.0920 −4.2543 1.1051 0.00035
Case 2 1.9958 13.2683 −31.6044 16.34029
Case 3 1.4797 19.1177 −44.6004 23.49390
Case 4 14.2123 −28.7658 0.5594 13.76120

Table 2. Coefficients used in expression (3.20) to compute the initial sea-surface profiles of
cases 1–4 illustrated in figures 4–12. The values are multiplied by bl0, which is the scaling factor
used to normalize the water elevation according to the scaling law (3.5). In these examples,
bl0 = 2000.

The discussion will be conducted here using the dimensional variables since we
believe that this choice helps the reader to grasp better the physics and the correct
scale of the phenomena we deal with. Correspondingly, we also adopt realistic values
for the parameters l0 (horizontal scale) and b (bottom slope) of the model: the former
is taken to be equal to 50 km, whereas for the latter the value b = 1/25 is selected,
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since it is typical for the sea depth gradient averaged over a coastal belt 100 km
wide in many regions of the world. In this section, we have standardized the initial
sea-surface maximum elevation, which we designate η∗

max, to the value of 1 m, in
order to permit an easier comparison among the various cases. In the rest of the
paper, tsunami evolution will be illustrated with the aid of two kinds of plots: water
elevation profiles taken at a specified time and time histories of the water elevation
and velocity at the coastline. The procedure to compute such curves is simple and is
outlined below. In the former case, let us specify the dimensional time t∗ at which
the profile is desired and a set of values for the dimensionless coordinate σj = j�σ

(j = 0, 1, . . . , N) where �σ is a step of appropriate size. Then, by virtue of the scaling
law (3.6) and of the transformation relation (3.12), a useful iteration scheme can be
set up:

λ
(n)
j = 2

[
t∗/T + v

(
σj , λ

(n−1)
j

)]
,

where the velocity v is calculated with the aid of equation (3.22). Let us call λj the
limit of the above sequence. If the initial values to start the procedure are taken as

λ0
0 = 0, (4.1)

λ0
j = λj−1, (4.2)

only a few iteration steps are needed to estimate λj . Once λj is known, the dimensional
water elevation η∗

j and the corresponding coordinate x∗ are computed by means of

η∗
j = bl0η(σj , λj ), (4.3)

x∗
j = l0

[
η(σj , λj ) −

σ 2
j

16

]
. (4.4)

The set of values (η∗
j , x

∗
j ) is the discrete representation of the water surface profile

we seek. By adapting the parameters �σ and N we can change the resolution and
the length of the profile. In an analogous way, we can proceed to compute the
coastline time histories. We consider the set of values λj = j�λ (j =0, 1, . . . , N) and
compute the corresponding dimensionless coastal velocities and elevations vcj = vc(λj )
and ηcj = ηc(λj ) by means of equations (3.26) and (3.27). Then we can exploit the
hodograph transformation (3.12) and the scaling relationships (3.4)–(3.6) to obtain

t∗
j = T

(
λj

2
− vcj

)
, (4.5)

η∗
j = bl0ηcj , (4.6)

x∗
j = l0ηcj . (4.7)

The pairs (v∗
cj , t

∗
j ) and (η∗

cj , t
∗
j ) are the discrete dimensional forms of the time histories

sought with resolution and length governed by �λ and N respectively. The evolution
of the tsunami produced by the fault of case 1, with the initial profile portrayed in
figure 4(a), is shown in figure 5 by means of a series of snapshots taken at various
times. It is a mild tsunami with water elevation in the order of 1 m at the coast
(η∗

max = 1 m is attained slightly offshore), produced by an earthquake with fault slip
larger than 3m (see table 1). The sea reference level is the unperturbed water level far
from the source, which coincides also with the level of the sea as time t∗ grows larger.
The earthquake dislocation does not change the sea reference level, since a local
limited-extent perturbation, like the one produced by the earthquake, cannot have an
effect on the level of the entire ocean. But it has the effect of modifying the position of
the shoreline permanently. The shore uplift causes the pre-event shoreline to be offset
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Figure 5. Case 1. Water elevation profiles computed at various times.

upward and to take a new position after the end of the tsunami. During the first
minute or so, the sea water piles up against the coast and penetrates a little beyond
the old shoreline. In the following 5 minutes, it retreats towards the new shoreline,
crossing it slightly later. At around 8 minutes, it reversess motion, advancing slowly to
the final position. The oscillatory movement of the shoreline is very simple (up–down–
up). It moves quite slowly, its velocity almost vanishing around 10 minutes after the
earthquake. The shoreline movement and the instantaneous velocity of the water are
plotted in figure 6. Case 2 tsunami is depicted in figures 7 and 8. The coastline is not
offset by the earthquake, while the sea floor is uplifted. The initial single bulge of the
sea surface tends to split into a sequence of two waves: one reflects from the coast
before travelling seaward, while the other propagates seaward from the beginning, as
can be seen from the series of water elevation profiles computed at different times
(figure 7). On the coast only one oscillation is visible, which inundates the shore and
retreats in about 5 minutes (figure 8). The process of sea withdrawal beyond the usual
shoreline is very slow and mild. Case 3 is a tsunami caused by an undersea fault,
causing subsidence of the shore and uplift of the offshore sea floor. The qualitative
tsunami evolution is not dissimilar from case 2. Two waves form, one of which reflects
from the coast before travelling seaward (figure 9). At the coast, the sea water is seen
first to advance beyond the old shoreline and to flood the beach (figure 10). The
maximum inundation is reached in about 3 minutes. Then the shoreline retreats, but
remains above its old level. Case 4 is the case of coastal subsidence, with the maximum
subsidence found some distance offshore and sea-bed uplift at a larger distance from
the coast. The initial form of the wave is a crest–trough system with a trough that is
truncated and on the coastal side. The sea water profiles are more complex than in
previous cases. The crest–trough divides into two systems. The one impacting the coast
is reflected and reversed, and then travels seaward following the other (figure 11). The
first tsunami manifestation at the coast is the retreat of the shoreline below the old
limit, due to the arrival of the wave trough. After that, the sea level begins rising and
the incoming crest inundates the beach (figure 12). The following water withdrawal
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Figure 6. Case 1. Elevation η∗
c and velocity v∗

c of the instantaneous shoreline vs. time. Run-up
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c (0) is the initial elevation of the coastline produced by
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Figure 7. Case 2. Water elevation profiles computed at various times.

is moderate and does not go beyond the old level. The impact of the tsunami is
accompanied by corresponding water currents with speed exceeding 1 m s−1.

One of the main questions about the interaction of tsunamis with the coast concerns
the amplification. If we define Rup and Rdown as the maximum and the minimum
elevation at the coast with respect to the sea reference level, and if we call η∗

min the
minimum elevation of the initial sea-surface profile (in analogy with the quantity η∗

max
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Figure 8. Case 2. Elevation η∗
c and velocity v∗

c of the instantaneous shoreline vs. time.
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Figure 9. Case 3. Water elevation profiles computed at various times.

defined previously), then the amplification factor A may be computed as

A =
Rup − Rdown

η∗
max − η∗

min

(4.8)

which is the ratio of the maximum vertical excursion of the wave measured at the coast
and the initial wave height. A further interesting aspect is the potential flooding by
the tsunami, that is the capability of the tsunami to inundate land, which is influenced
drastically by the vertical co-seismic displacement of the coast. In our notation, the
elevation of the coast at time t∗ = 0, i.e. η∗

c (0), corresponds to the offset caused by
the earthquake. It is the vertical position of the old pre-earthquake shoreline. The
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Figure 10. Case 3. Elevation η∗
c and velocity v∗

c of the instantaneous shoreline vs. time.
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Figure 11. Case 4. Water elevation profiles computed at various times.

difference Rup − η∗
c (0) is the vertical projection of land that is flooded temporarily by

waves, and correspondingly the ratio (Rup − η∗
c (0))/b is the horizontal projection of

the inundated land. It is convenient to introduce the flooding factor Ff , which we
define here as follows:

Ff =
Rup − η∗

c (0)

Rup − Rdown

, (4.9)

which is in the range [0,1] and is the fraction of the coastal wave height that causes
inundation beyond the old shoreline level. Its complement to 1 which we designate
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Figure 12. Case 4. Elevation η∗
c and velocity v∗

c of the instantaneous shoreline vs. time.

η∗
min η∗

max η∗
c (0) Rdown Rup A Ff Fd

(m) (m) (m) (m) (m) (%) (%)

Case 1 0.000 1.000 0.943 −0.178 1.026 1.204 6.9 93.1
Case 2 0.000 1.000 0.000 −0.270 1.494 1.764 84.7 15.3
Case 3 −0.509 1.000 −0.509 −0.509 1.748 1.496 100.0 0.0
Case 4 −1.085 1.000 −0.233 −1.477 2.161 1.730 66.4 33.6
Case 4 (K = 5) −5.425 5.000 −1.165 −7.235 10.805 1.730 66.4 33.6
Case 4 (K = − 1) −1.000 1.085 0.233 −2.161 1.477 1.730 33.6 66.4
Case 4 (K = − 5) −5.000 5.425 1.165 −10.805 7.235 1.730 33.6 66.4

Table 3. Water elevation, amplification coefficient A and flooding and drying factors Ff and
Fd for the four cases.

as Fd and call the drying factor, is

Fd =
η∗

c (0) − Rdown

Rup − Rdown

. (4.10)

It is similarly the fraction of the coastal height quantifying the withdrawal of the
sea water from the old coastline and causing the sea floor to appear temporarily dry.
Table 3 lists the amplification coefficient A and the flooding and drying factors, Ff and
Fd , computed for the four cases treated above. The amplification factor ranges from
1.2 to 1.76, which means that the tsunami at the coast is seen to be slightly larger than
offshore. Notice that run-up Rup and amplification factors A do not correspond with
each other. Case 4 produces the largest Rup (2.161 m), but not the largest tsunami-
height amplification. The flooding factors differ significantly, since they discriminate
between coastal subsidence and coastal uplift: after seismic subsidence, coastlines
are much more prone to tsunami flooding, that is to inundation beyond the pre-
earthquake shoreline level (cases 3 and 4), than after coastal uplift (case 1).
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Figure 13. Frequency histogram of the amplification factor A. The total number of configura-
tions explored is Nc = 538 084. The class width is 0.1. The amplification factors found range
from 1.046 to 2.076.

5. Analysis of the influence of the initial waveform
The analysis of the four cases associated with the seismic sources illustrated in

figure 4 has provided interesting results. We found that different initial sea-surface
profiles give rise to different amplifications, and is relevant to explore the effect of
the initial tsunami waveform in a more systematic way. We restrict ourselves to
the class of waveforms that can be obtained by using the four-coefficient expression
(3.20), since these can be connected to the co-seismic displacement fields of near-shore
crustal faults. We have considered a large number of configurations [c0, c1, c2, c3]
by varying the coefficients, and for each configuration we have computed the initial
sea-surface profile and the coastal time history, calculating the amplification factor A

as well as all other relevant coefficients (Rup, Rdown, etc.). Here we present the results
of the analysis of Nc = 538 084 configurations. To aid comparison, all configurations
have the properties of producing normalized profiles, with unitary initial wave height,
that is η∗

max −η∗
min =1 m, and of having a prevailing positive wave, that is η∗

max > |η∗
min|.

Moreover, the numerical process that generates the ensemble of configurations checks
easily that no configuration is repeated.

The histogram of the amplification factors that we found is plotted in figure 13.
The frequency graph has no probability significance, since there is no occurrence
probability value attached to each configuration. Nonetheless it is interesting to
note that the distribution of the computed amplification coefficient has a mean
value of 1.208 and standard deviation of 0.106, while the mode is around 1.25.
It is more interesting to take account of the extremes of this distribution: the
minimum and maximum amplifications are 1.046 and 2.076 respectively. Figure 14
shows 12 configurations selected from all Nc: we selected the ones associated with
the maximum and the minimum amplification coefficients A together with a sample
of ten configurations corresponding to intermediate amplifications from 1.1 to 2.0,
regularly spaced (�A = 0.1). Figure 15 shows the corresponding coastal time histories.
The analysis of figure 14 enables us to deduce an important correlation between the
waveform and the wave height amplification at the coast. The simplest waveforms



50 S. Tinti and R. Tonini

0.8

0

0.8

0

0.8

0

0.8

0

0.8

0

0.8

0

0.8

0

S
ea

-s
ur

fa
ce

 e
le

va
ti

on
, η

*  (
m

)

A = 2.076

A = 2.006

A = 1.900

A = 1.800

A = 1.700

A = 1.600

A = 1.500

A = 1.400

A = 1.300

A = 1.200

A = 1.100

A = 1.046

–40 –30 –20 –10 0

Distance, x* (km)

0.8

0

0.8

0

0.8

0

0.8

0

0.8

0

–40 –30 –20 –10 0

Distance, x* (km)

Figure 14. Initial sea-surface profiles selected out of the ensemble of Nc configurations: they
correspond to the maximum and minimum values of the amplification coefficients found as well
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Figure 15. Time histories of the shoreline movement for the same selection of
configurations as figure 14.

with the highest uplift at the coastline are the ones that are least amplified (A around
1–1.2). In these cases the shoreline moves gradually from the old to the new position
(sea retreat) with some small overshooting at most. For profiles where in the seaward
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direction the water elevation first increases up to a maximum value and then decreases
down to the unperturbed level, the tsunami amplification increases further. This seems
to go in parallel with the increase of the difference between the wave maximum level
offshore η∗

max and the coastal elevation η∗
c (0), leading to coefficients between 1.3 and

1.6. Profiles exhibiting one minimum (closer to the coast) and one maximum (further
from the coast) water level have even larger amplifications that grow together with
the difference η∗

c (0) − η∗
min and are in the highest range 1.7–2.076. Cases 1–4 that

we have discussed in the previous section can be easily recognised to fall in one of
the above categories. It is also quite useful to observe that all the above profiles can
be roughly related to surface vertical displacements of seismic faults that are in the
near-shore belt, and that the amplification coefficients clearly seem to grow as the
fault position moves from inland to offshore, which is a very relevant result.

6. Analysis of the influence of the wave amplitude
The waveforms that we considered in previous sections were normalized either with

respect to η∗
max (cases 1–4) or with respect to the tsunami height η∗

max − η∗
min. The

question arises whether the conclusions we drew on the amplification coefficients and
the flooding and drying factors can also be applied when the amplitude or height of
the initial wave is arbitrary. Here we prove that the results obtained previously are
perfectly applicable within the range of amplitudes that can reasonably be expected
for tsunamis of seismic origin. To this end, let us assume first that a given profile
bl0η(c|σ, λ=0), computed through the four-coefficient expression (3.20), represents the
initial sea-surface displacement η∗(x∗, t∗ = 0) caused by an earthquake with a given
fault slip. In the above notation we have put in an explicit form the dependence of
the profile on the configuration vector c formed by the set of four selected coefficients
[c0, c1, c2, c3]. After taking into account relation (3.25) and scaling laws (3.4) and
(3.5), we can write the following equations:

η∗(x∗, t∗ = 0) = bl0η(c|σ, λ = 0), (6.1a)

x∗ =
η∗(x∗, t∗ = 0)

b
− l0σ

2

16
. (6.1b)

It may be recalled that the space coordinate x∗ is measured from the position of
the post-earthquake coastline. If we introduce the space coordinate ξ ∗ referred to
the pre-earthquake shoreline location, then it is straightforward to write the relation
between the two reference frames:

x∗ = ξ ∗ − l0ηc(c) (6.2)

where ηc(c) = η(c|σ = 0, λ=0), and l0ηc(c) is the co-seismic horizontal offset of the
coastline. Formally η∗(x∗, t∗ = 0) differs from η∗(ξ ∗, t∗ = 0) and we can use the Taylor
expansion truncated to the first order to write

η∗(x∗, t∗ = 0) = η∗(ξ ∗, t∗ = 0) − bηc(c)
∂η∗(ξ ∗, t∗ = 0)

∂ξ ∗ .

If we consider orders of magnitude that are appropriate for the initial waveforms of
the tsunamis, that is

o(η∗(x∗, t∗ = 0)) = 1–10 m initial elevation in the post-earthquake
reference frame,

o(η∗(ξ ∗, t∗ = 0)) = 1–10 m initial elevation in the pre-earthquake
reference frame,
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o(bηc(c)) = 1–100 m horizontal permanent displacement of
the shoreline,

o

(
∂η∗(ξ ∗, t∗ = 0)

∂ξ ∗

)
= 10−4–10−3 gradient of the initial tsunami waveform,

we may easily conclude that the following approximation holds:

η∗(x∗, t∗ = 0) ≈ η∗(ξ ∗, t∗ = 0). (6.3)

Given the above premises, let us now consider the effect of a seismic source possessing
exactly the same characteristics as a given fault, except for the fault slip, which is
supposed to be multiplied by the factor K . Owing to the linear dependence of the
source dislocation and co-seismic displacements upon the slip magnitude, we conclude
that the sea-surface profile associated with this new case is Kη∗(ξ ∗, t∗ = 0), or, by virtue
of the approximation (6.3), Kη∗(x∗, t∗ = 0). Now the problem is that of finding the
configuration vector c′ that is the most suitable to represent this profile. To this end,
we can set up a system of equations analogous to (6.1a, b), i.e.

Kη∗(x ′∗, t∗ = 0) = bl0η(c′|σ, λ = 0), (6.4a)

x ′∗ =
Kη∗(x ′∗, t∗ = 0)

b
− l0σ

2

16
, (6.4b)

where we have introduced the horizontal variable x ′∗ for reasons that will be clarified
soon. Expression (3.20) being a linear function of the configuration vector, equation
(6.4a) is satisfied if and only if c′ = Kc, since

η(c′ = Kc|σ, λ = 0) = Kη(c|σ, λ = 0).

On the other hand, the coordinate transformation (6.4b) is not linear and if a pair of
(x∗, σ ) is a solution of (6.1b), it cannot also satisfy equation (6.4b). Let us examine
the property of the solution corresponding to the configuration c′ = Kc. Equation
(6.4a) tells us that this solution has elevation exactly a factor K larger than η∗, as
desired, but equation (6.4b) states that it is attained not at x∗, as required, but at the
horizontal position x ′∗ that is related to x∗ by

x ′∗ − x∗ = (K − 1)l0η(c|σ, λ = 0). (6.5)

However, the shift (6.5) has size comparable with shift (6.2), and correspondingly, it
can be considered negligible, which leads us to the conclusion that the configuration
c′ = Kc provides an acceptable solution to the problem. We notice that while shift
(6.2) is uniform, i.e. independent of the position, since it corresponds to the constant
offset of two reference frames, the shift (6.5) depends on the elevation η(c|σ, λ=0),
which has the effect of changing the waveform slightly. If K > 1, positive maxima
of the amplified tsunami η(Kc|σ, λ=0) are shifted landward, whereas zeros do not
change position and negative minima are shifted seaward, with the net effect that the
initial waveform of η(Kc|σ, λ=0) is steeper than the one associated with η(c|σ, λ=0).
However, this change is irrelevant as long as we consider quantitative values that are
appropriate for real tsunamis of seismic origin.

The above analysis holds even when the factor K is negative. Using negative
factors means interchanging positive and negative water elevations and corresponds
to inverting the sign of the seismic slip on the faults. Thrust faults become normal
faults, and zones of subsidence are replaced by uplift and vice versa. Figure 16 shows
the time histories of the shoreline elevation computed for case 4 discussed in § 4 and
of three more tsunamis obtained by using positive and negative values of multiplying
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Figure 16. (a) Coastal water elevation and (b) coastal velocity vs. time for four tsunamis,
with case 4 (see figure 4d) selected as the reference case. In this graph it is plotted as (ii).
The others are obtained by using the multiplying factors K =5 (i), K = −1 (iii) and K = −5
(iv) to compute the configuration vector. Observe that all velocity curves intersect exactly as
the velocity vanishes, which means that all tsunamis take exactly the same time to reach the
run-up and the run-down heights. The curves of each panel are similar, but they do not have
exactly the same shape, since the problem is nonlinear. Nonlinear terms deform the velocity
curves remarkably: oscillations of large-amplitude waves tend to be asymmetric.

factors. As regards the behaviour of the amplified tsunami at the coast, it is worth
observing that, due to the nonlinearity of the set of expressions (3.26), (3.27) and
(3.12), the following inequalities hold:

v∗
c (Kc|t∗) �= Kvc(c|t∗)

and

η∗
c (Kc|t∗) �= Kηc(c|t∗).

But, if attention is focused on run-ups and run-downs, which correspond exactly to
turning points of the shoreline motion and hence satisfy the condition of vanishing
velocity, then the following relations can be written:

Rup(Kc) = max{bl0ηc(Kc|λ)} = max{Kbl0ηc(c|λ)} = KRup(c), (6.6)

Rdown(Kc) = min{bl0ηc(Kc|λ)} = min{Kbl0ηc(c|λ)} = KRdown(c). (6.7)

Further, we stress that all tsunamis differing each other only by an amplifying
factor reach their maximum inundation and retreat at the coast at the same time.
This is the trivial consequence of the hodograph law (3.12). Indeed, both functions
ηc(Kc|λ) and ηc(c|λ) attain their maximum and minimum in correspondence with
the same respective value of λmax and λmin which do not depend on K . Further, the
transformation law

t∗ = T
λ

2
− T

v0

vc(λ),
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though in general depending on K through vc(λ), reduces to

t∗
max = T

λmax

2
, t∗

min = T
λmin

2

for all possible K , as we wanted to prove.
Since all the relevant quantities that appear in the definition of the amplification

coefficient A given by the ratio (4.8) are proportional to the multiplying factor K ,
it follows that A is independent of K , which justifies a posteriori the use we made
of normalized tsunamis in the previous sections. Further, since using negative values
for K exchanges the roles of minima and maxima both on the profiles (ηmax → ηmin)
and on the coastal time histories (Rup → Rdown), it can immediately be seen that the
flooding and drying factors also exchange each other (Ff → Fd). The last rows of
table 3 illustrate the effect of applying multiplying factors to the tsunami of case 4,
complementing the results shown in figure 16.

The observed independence of the amplification coefficient A of the factor K

implies that one obtains the same value of A for very large as well as for very
small waves, provided that they possess the same waveform. Hence, since small waves
can be treated by means of the linear theory, it follows that the linear theory can be
conveniently used to compute wave amplifications, which is a feature that was already
pointed out in the literature by other authors such as Carrier (1971), Synolakis (1987),
Synolakis (1991), Pelinovsky & Mazova (1992), and Carrier et al. (2003).

7. Analysis of the influence of the ocean bottom slope
In order to examine the effect of the sea-floor slope on the tsunami evolution,

we can follow the same kind of analysis we performed in the section above. Let us
suppose that the same earthquake causes the displacement of the sea bottom in two
oceans having different bottom slopes b and b′. If we denote by η∗(x∗, t∗ =0) the initial
sea-surface profile in the post-earthquake reference frame, and neglect the horizontal
shift between the pre-earthquake and post-earthquake coordinates by virtue of the
same approximation (6.3), we can write the following sequence of equations:

η∗(x∗, t∗ = 0) = bl0η(c|σ, λ = 0) = b′l0η(c′|σ, λ = 0),

from which we deduce the following relation between the configuration vectors of the
two geometries:

c′ =
b

b′ c.

The link between the run-ups and the draw-downs associated with the two ocean
beaches can be inferred accordingly as

R′
up = b′ max{ηc(c′|λ)} = b′ max

{
b

b′ ηc(c|λ)
}

= b max{ηc(c|λ)} = Rup,

R′
down = b′ min{ηc(c′|λ)} = b′ min

{
b

b′ ηc(c|λ)
}

= b min{ηc(c|λ)} = Rdown.

This shows that the extreme water elevations at the coast do not depend upon
the sea-floor slope, given the same initial sea-surface profile. The transformation law
(3.12) as well as the normalizing laws for the time and the velocity (3.6) and (3.3)
show however that both the time scale and velocity scale depend on the parameter
b. When b is small, then the oscillation takes more time to complete and the wave
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Figure 17. Dependence on the bottom slope b. Time histories of (a) the coastal water elevation
η∗

c , (b) sea penetration x∗
c and (c) water velocity v∗

c . Run-ups and run-downs are unaffected by
the slope (a). The smaller the slope, the shallower is the ocean for a given distance from the
shore, and, as regards the tsunami, (i) the slower is the oscillation and the larger is the wave
period, (ii) the larger is the horizontal velocity of the water (c), (iii) the larger are the water
inland penetration and the sea retreat offshore (b).

period is longer. On the other hand, the horizontal velocity grows and the tsunami
advances and retreats by a longer path. Figure 17 shows plots of coastal time histories
of the shoreline movement, computed for the reference case 2 and for three different
values of the slope (b = 0.02, b =0.04 and b = 0.06), the intermediate value being the
one considered in all previous examples. As far as the amplification coefficient is
concerned, our conclusion is that there is no influence of the slope b on A, and this
conclusion is also true for both the flooding and drying factors Ff and Fd .

8. Analysis of wave breaking
Wave breaking for long waves evolving on a constant slope and governed by equa-

tions (3.13) is studied by considering the Jacobian of the hodograph transformation
(3.9)–(3.12), namely ∂(x, t)/∂(σ, λ), that can be put in the following form (Spielvogel
1975):

∂(x, t)

∂(σ, λ)
=

σ

4
γ (σ, λ) γ (σ, λ) =

[
(vσ )2 −

(
1
2

− vλ
)2]

. (8.1)

Vanishing of the Jacobian occurs either at σ = 0, that is at the moving shoreline, for
all the solutions of the problem, or when γ (σ, λ) = 0, which is a condition that not all
waves match and that can be taken as the mathematical expression for the condition
of wave breaking. For small-amplitude waves it may be proven that γ (σ, λ) ≈ −1/4,
since both derivatives of the velocity have absolute value small compared to 1/2,
and therefore these waves evolve regularly in the (x, t)-space without breaking. Given
a non-breaking solution v(σ, λ) of the linear equation (3.13) for which the function
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γ (σ, λ) is non-zero in the entire domain (σ, λ), it is of interest to pose the question
whether, multiplying it by a coefficient k, one obtains a wave that breaks during its
evolution. In this case the breaking condition can be written as

(kvσ )2 −
(

1
2

− kvλ
)2

= 0 (8.2)

which is a quadratic equation in the unknown parameter k admitting the following
two real roots:

k1(σ, λ) =
1

2(vλ − vσ )
, k2(σ, λ) =

1

2(vλ + vσ )
. (8.3)

Both roots depend on the variables σ and λ, since the velocity derivatives do. Further,
there is no loss of generality in assuming that, for ordinarily evolving non-breaking
waves, the sum and the difference of the velocity derivatives in the denominators of
(8.3), and consequently also k1 and k2, can take positive and negative values over the
(σ, λ)-domain. Under this hypothesis, the value of the coefficient given by

Kb,1 =
1

2 max (vλ ± vσ )
> 0, (8.4a)

where the maximum is sought over the entire domain (σ � 0, λ� 0), is the minimum
value that transforms the non-breaking wave v(σ, λ) into a breaking wave. On the
other hand, it is straightforward to see that the value

Kb,2 = − 1

2 min (vλ ± vσ )
> 0, (8.4b)

is the minimum coefficient leading −v(σ, λ) to a breaking condition. For this reason,
here Kb,1 and Kb,2 are designated as the breaking factors, and can be interpreted as
indicators of whether the given wave will break. Any solutions of the kind α1v(σ, λ)
with 0 <α1 <Kb,1 or of the kind −α2v(σ, λ) with 0 <α2 <Kb,2 correspond to non-
breaking waves. Also, the higher Kb,1 and Kb,2 are, the further the respective waves
v(σ, λ) and −v(σ, λ) are from breaking conditions. Notice that the waves v(σ, λ) and
−v(σ, λ), which have the same initial height and the same amplification factor (see
§ 6), have in general different breaking factors.

The above analysis can be applied to all the waves that have been treated in the
previous sections of this paper that actually represent non-breaking waves. Moreover,
it is remarked that all these waves satisfy the conditions that vσ (σ, λ= 0) = 0 (coming
from the requirement (3.15) that the initial velocity is zero) and that vσ (σ = 0, λ) = 0
(the velocity being a function of σ 2, according to formula (3.22)). Hence, if the search
for Kb is restricted to the axis λ=0 and to the axis σ = 0, forming together the
boundary of the domain (σ, λ), then the expressions (8.4a, b) simplify to

K∗
b,1 =

1

2 max vλ
, K∗

b,2 = − 1

2 min vλ
, (8.5)

where K∗
b,1 � Kb,1 and K∗

b,2 � Kb,2 are overestimates of the breaking factors. Computing
K∗

b,1 and K∗
b,2 is much quicker than finding Kb,1 and Kb,2, and can provide equally

useful information.
It is worth observing that conditions (8.5) correspond to imposing that the

derivatives of the solution diverge in the space–time domain. In fact, it is easy
to show that for the wave kη(σ, λ) the space derivative of the dimensional elevation
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η∗ at the initial time t∗ = 0 (corresponding to λ= 0) can be put in the form

η∗
x∗ =

bkvλ

kvλ − 1/2
. (8.6)

The condition that kvλ < 1/2 gives the result that

min(η∗
x∗) = b max

(
kvλ

kvλ − 1/2

)
,

whence it is seen that η∗
x∗ → −∞ as max(kvλ) → 1/2, or equivalently as k → K∗

b,1.
Therefore, it can be stated that the condition of breaking is reached as the initial
wave slope in the shoreward transition from a crest to the next trough tends to
become vertical. Analogously, at the shoreline (corresponding to σ =0), the time
derivative of the velocity for the wave kv(σ, λ) can be written as

v∗
t∗ =

bgkvλ

1/2 − kvλ
. (8.7)

Hence

max(v∗
t∗) = bg max

(
kvλ

1/2 − kvλ

)
,

and one infers that v∗
t∗ → ∞ as max(kvλ) → 1/2, or equivalently as k → K∗

b,1. In
conclusion, the breaking condition implies that the wave acceleration grows larger
and larger, which was already noted by Pelinovsky & Mazova (1992).

We focus here on the set of Nc solutions that were introduced in § 5 where the effect
of the initial waveform on the wave evolution was studied. By applying the above
analysis to these non-breaking waves, we find the corresponding set of K∗

b,1 and of
K∗

b,2, which, for simplicity, hereafter will be denoted only as K∗
b . The derivative vλ,

which is needed to compute K∗
b , has the analytical expression given in Appendix B.

However, it is observed that on the axis λ=0 it is given by the formula (3.21), and at
the shoreline it can be conveniently calculated through the numerical approximation
(vc(λ+ �λ) − vc(λ − �λ))/2�λ, which makes use of the equation (3.22). At the origin
point, the following equation vλ(0, 0) = f (0) holds:

vλ(0, 0) = −8

3∑
k=0

(
3
2

+ k
)
ck.

Notice that since the Nc waves have initial unit height η∗
max−η∗

min (in metres), the factor
K∗

b can also be interpreted as the initial wave height (in metres) of the minimum-size
breaking tsunami. We obtain as many as 2Nc values of breaking factors. The results
can be illustrated by means of the figures 18 and 19. The computed values of K∗

b

vs. the corresponding amplification factor are plotted in figure 18. In order to make
the graph more readable, the range of amplification factors has been divided into
52 classes (in the range [1.04, 2.08] with width �A= 0.02) and for each class the
minimum, the maximum and the mean value of K∗

b , here denoted respectively as
K∗

b,min, K∗
b,max and K∗

b,ave, have been plotted. The first remarks concern the K∗
b,min

curve, where we see that K∗
b,min ranges from about 19 to less than 9 and has a

descending trend as the amplification factor increases. This means that none of the
waves considered here is expected to break if the initial height is less than 8–9 m,
and further, that the simplest waveforms (namely those with a monotonic initial
elevation profile, which may be associated with seismic sources with their epicentre
on land and are characterized by amplification factors close to 1) are not expected
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Figure 18. Breaking factors vs. the amplification factor computed for all Nc = 538 084
solutions considered in previous analyses. For graphical reasons, the Nc solutions are grouped
into 52 classes of amplification factors. K∗

b,min, K∗
b,max and K∗

b,ave are the lowest, the largest
and the mean value of K∗

b in each class. Since the initial wave height of the Nc solutions
is 1m, the breaking factors can be taken as the minimum initial wave height (in m) that
leads to a breaking wave. The horizontal lines are the Earth’s surface co-seismic displacements
computed through the empirical law obtained by Wells & Coppersmith (1994) as a function
of the moment magnitude, and can be taken as reference values for the sea-floor dislocation
that can be expected from the largest earthquakes. It can be seen that tsunamis generated by
near-shore earthquakes of magnitude M = 8.5 or less do not break.

to break even when the initial tsunami height is around 19 m. From figure 18 we
can furthermore observe that the computed breaking factors vary over a significantly
large range going approximately from less than 9 to more than 500. Such a variability
is very large even for solutions having the same amplitude factor, and that, according
to our finding in § 5, possess initial elevation profiles falling in the same waveform
category and are expected to evolve similarly. Figure 19 is used to illustrate the
point. We select four solutions out of the Nc set with the same amplification factor
A= 1.60, but with different breaking factors K∗

b that are between 13.6 and 28.2. Their
profiles are plotted in figure (a) and may be associated with an earthquake having
its epicentre roughly corresponding with the shoreline. The corresponding solutions
in the space (σ, λ) are then multiplied by the smallest breaking factor, i.e. by 13.6.
This produces four more solutions with initial wave height equal to 13.6 m, one of
which satisfies the breaking condition, while the others do not. In figure 19(b, c) the
initial profiles and the corresponding velocity of the shoreline are given, which shows
that the breaking wave exhibits a profile with a vertical slope at the shoreline and a
velocity time history vc(t

∗) with a vertical time derivative at the time t∗ = 0. Observe
that this critical situation is very confined in space and time, suggesting that breaking
is more influenced by local details of the waveform than by general features, and that
small-scale characteristics are more relevant than large-scale ones. The other curves
represent non-breaking waves: one of these (having K∗

b = 14.5) is close to the breaking
condition, while the others are still far from it and will break only in correspondence
with larger initial heights.



Analytical evolution of tsunamis induced by near-shore earthquakes 59

η
*  

(m
)

η
*  

(m
)

v c
*  

(m
 s

–1
)

 t* (s)

1.2

0.8

0.4

0

16

8

12

4

0

12

8

4

2

0

0 10 20 30 40 50 60

 x* (km)

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2

 x* (km)

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0

(a)

(b)

(c)

K*
b = 28.2

K*
b = 28.2

K*
b = 13.6

13.6

13.6

14.5

14.5

14.5

28.2 20.7

20.7

20.7
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those of (a) after multiplication by 13.6. (c) Time histories of the multiplied waves. Note that
multiplication is performed in the space (σ, λ).

9. Conclusions
The analysis that has been performed in this work enabled us to find important

results on the characteristics of tsunamis induced by seismic dislocations in near-
shore regions, though we have used an idealized bathymetry for the ocean, namely a
constant-slope sea floor. The most relevant result concerns the expected amplification
of the tsunami at the coast. We have found that the four-coefficient expression (3.20)
can be used to provide initial sea-surface profiles that may be related to co-seismic
displacements induced by seismic faults. By taking into account a very large number
of such profiles (more than 5 × 105) we have found that the amplification coefficient A

ranges from 1.046 to 2.076. We cannot rule out that if we sample the four-coefficient
initial configuration space differently, we can enlarge the range, but we are confident
that the possible extension is very minor. Examining the waveforms, we have found a
relation between the amplification coefficient and the number of waves of the initial
profiles, that, and this is very interesting, can also be related to the distance of the
seismic fault from the coastline. An inner fault, that is a fault inland, produces a sea-
surface profile that increases (decreases) monotonically from offshore landward, with
the maximum displacement at the coast, and this profile is found to be the least prone
to amplification: the tsunami height practically does not change (A ≈ 1). Moving the
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fault toward the sea has the effect of moving the maximum displacement seaward,
and, when the source is near-shore but under the sea, the initial profile shows a crest–
trough system corresponding to regions of sea-bed uplift and subsidence. Regarding
the amplification coefficient A, it has been found that the faults offshore are the ones
that induce initial tsunami waveforms that can be most amplified at the coast.

If the interest is not in tsunami amplification, but in the tsunami inundation poten-
tial, then we must discriminate between coastal positive and negative displacements
and consider the flooding factors. Permanent subsidence of the shoreline favours
inundation which is reflected in flooding factors Ff approaching 1, whereas coastal
uplift favours sea retreat and the corresponding drying factors Fd are close to 1.

An extremely relevant result is that none of the quantities we have used to quantify
the tsunami effects, namely A, Ff and Fd , depends on the initial tsunami wave height,
at least within the range of reasonable heights expected from seismic sources. This
property is essential since it enables us to apply the results we obtained for normalized
wave profiles to waveforms of arbitrary amplitude.

The effect of the sea-bottom slope on tsunami evolution is a further aspect investiga-
ted here, and it is remarkable to have obtained that tsunami amplification is indepen-
dent of the slope, which instead affects significantly the water speed and the tsunami
time scale. Wave periods decrease with the ocean slope, while water velocity increase.

Last, breaking conditions for tsunami waves have been studied through the analysis
of the Jacobian of the hodograph transformation. The main results obtained are that
tsunamis with initial height less than about 8–9 m do not break, and that tsunamis
with a very simple initial profile (that may be attributed to earthquakes with epicentre
onshore) do not break even for initial heights as large as 19 m. Such large Earth’s
surface dislocations cannot be produced by small or medium-size earthquakes. Making
recourse to experimental laws giving the co-seismic displacements as a function of
the earthquake size, such as the one that was deduced by Wells & Coppersmith
(1994), one sees that only very large earthquakes (with moment magnitude � 8.5) can
offset the Earth’s surface by more than 8 m, and that dislocations exceeding 10–15 m
are expected to be generated only by exceptionally large earthquakes (see figure 18).
Therefore, we conclude that most tsunamis that are caused by near-shore seismic
sources are likely to evolve and attack the coast without breaking.

The research has been funded partly by GNDT-INGV (Gruppo Nazionale Difesa
dai Terremoti) and partly by GNV-INGV (Gruppo Nazionale di Vulcanologia)
through the Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, to study the
run-up of tsunamis generated in the near-shore zone.

Appendix A
Displacements and stresses caused by an earthquake in the surrounding medium

are difficult to compute, but under the hypothesis that the medium is a perfectly
elastic, homogeneous and isotropic half-space, explicit expressions can be provided
by dislocation theory both for point sources and for rectangular faults. Full solutions
are rather complicated and were published by Okada (1985, 1992) for basic types of
source dislocations (strike, dip, tensile and inflation). Here we deduce the expression
for the vertical displacement of the Earth’s surface for the special case of a dip–slip
fault of infinite length. To do so, we start from Okada’s solution as is given in table 6
of the 1992 paper, which is valid for a fault of width W and length L. However, with
respect to the original paper, we consider here a different orientation of the fault
that is aligned with the y∗-axis, and is placed between −L/2 � y∗ � L/2. After some
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manipulations, the vertical component of the displacement uz along the axis x∗, which
is taken to be normal to the fault, can be written as

uz(x
∗) =

U

2π
[US(x

∗) sin δ + UC(x∗) cos δ]. (A 1)

Here U is the slip on the fault and δ the dip angle, that is the angle the fault forms
with the horizontal plane, as is usual. The functions US(x

∗) and UC(x∗) are given by

US(x
∗) =

{
− ηq

R(R + ξ )
− arctan

(
ηξ

qR

)

+ 2(1 − 2ν) arctan

(
η(X + q cos δ) + X(R +X) sin δ

ξ (R + X) cos δ

)}∥∥∥∥ if δ �= 1
2
π,

US(x
∗) =

{
− ηq

R(R + ξ )
− arctan

(
ηξ

qR

)}∥∥∥∥ if δ = 1
2
π,




(A 2)

UC(x∗) =

{
− q2

R(R + ξ )

}∥∥∥∥, (A 3)

where the double bar symbol has the following meaning:

{f (ξ, η)}‖ = f (L/2, p) − f (L/2, p − W ) − f (−L/2, p) + f (−L/2, p − W ), (A 4)

and X, R, q and p are respectively defined as

X2 = ξ 2 + q2, (A 5)

R2 = ξ 2 + η2 + q2, (A 6)

q = x∗ sin δ − D cos δ, (A 7)

p = x∗ cos δ + D sin δ + W. (A 8)

Here D, appearing in the expressions for q and p, is the depth of the upper edge
of the fault taken positive downward. Notice that the Poisson coefficient ν is the
only elastic parameter influencing the seismic displacement, which indeed is a general
property of Okada’s solution, but the special case of a vertical fault (δ = π/2), uz(x

∗)
is found to be independent even of ν. After some algebraic computations, consisting
in performing the calculations implied by the double bar symbol and in letting the
fault length L go to infinity, the displacement uz(x

∗) can be written simply as

uz(x
∗) =

U

π

[
U∞

S (x∗) sin δ + U∞
C (x∗) cos δ

]
, (A 9)

U∞
S (x∗) =

pq

p2 + q2
− (p − W )q

(p − W )2 + q2
+ arctan

(
p − W

q

)
− arctan

(
p

q

)
, (A 10)

U∞
C (x∗) = − q2

p2 + q2
+

q2

(p − W )2 + q2
, (A 11)

where the dependence on x∗ is implicit in the functions q and p in expressions (A 7)
and (A 8). Notably, the above formula reveals that the vertical displacements are,
surprisingly, independent of the elastic parameters of the medium for a fault that is
infinitely long. Notice further that here the origin of the horizontal axis is taken to
coincide with the position of the projection of the upper edge of the fault. For a
vertical fault (δ = π/2), the expression simplifies further, becoming

uz(x
∗) =

U

π

[
x∗(D +W )

x∗2 + (D + W )2
− x∗D

x∗2 + D2
+ arctan

(
D

x∗

)
− arctan

(
D + W

x∗

)]
, (A 12)

uz(0) = 0.
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When the slip U is positive, the block on the right-hand side of the fault, i.e. on the
side of increasing x∗, moves downward, causing subsidence, while the block on the
opposite side of the fault goes upward. In this paper, the initial sea level elevation for
the tsunami has been assumed to be equal to the sea-bottom vertical displacement,
which implies that

η∗(x∗, t∗ = 0) = uz(x
∗). (A 13)

Appendix B
The inner integral of equations (3.17) and (3.18) is∫ ∞

0

σ 2
0 J1(τσ0)f (σ0) dσ0.

If use is made of the expression (3.21) for f (σ0), the above integral can be calculated
easily: ∫ ∞

0

σ 2
0 J1(τσ0)f (σ0) dσ0 = −8

∫ ∞

0

σ 2
0 J1(τσ0)(

1 + σ 2
0

)5/2

[
3∑

k=0

ck

(k + 3/2)(
1 + σ 2

0

)k

]
dσ0

= −8

3∑
k=0

ck(k + 3/2)

∫ ∞

0

σ 2
0 J1(τσ0)(

1 + σ 2
0

)k+5/2
dσ0

= −8

3∑
k=0

ck(k + 3/2)
τ k+3/2

2k+3/2Γ (k + 5/2)
Kk+1/2(τ ) (B 1)

where Kν(τ ) is the Bessel function of imaginary argument that is related to Hankel’s
function as follows (Gradshteyn & Ryzhik 1965):

Kν(τ ) =
πi

2
eπνi/2Hν

(1)(iτ ).

Since Kν(τ ), when the order is equal to an integer plus one-half, can be given the
form

Kk+1/2(τ ) =

√
π

2τ
e−τ

k∑
j=0

(k + j )!

j!(k − j )!(2τ )j
(B 2)

expressions (3.17) and (3.18) can be rewritten in the following way:

v(σ, λ) = − 8

σ

√
π

2

3∑
k=0

ck(k + 3/2)

2k+3/2
(k + 5/2)

×
k∑

j=0

(k + j )!

j!(k − j )!2j

∫ ∞

0

J1(τσ ) sin(τλ) τ k−j+1e−τ dτ, (B 3)

φ(σ, λ) = 8

√
π

2

3∑
k=0

ck(k + 3/2)

2k+3/2
(k + 5/2)

×
k∑

j=0

(k + j )!

j!(k − j )!2j

∫ ∞

0

J0(τσ ) sin(τλ) τ k−je−τ dτ. (B 4)
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Correspondingly, the derivative φλ(σ, λ) that is needed to compute the water elevation
η, can be put in the form

φλ(σ, λ) = 8

√
π

2

3∑
k=0

ck(k + 3/2)

2k+3/2Γ (k + 5/2)

×
k∑

j=0

(k + j )!

j!(k − j )!2j

∫ ∞

0

J0(τσ ) cos(τλ) τ k−j+1e−τ dτ. (B 5)

The derivatives of the velocity v(σ, λ) enter the formula of the Jacobian of the
hodograph transformation and the analysis of wave breaking. Here only the
expression for vλ(σ, λ) is given, which can be used to calculate the breaking factor K∗

b

and which can be easily derived from (B 3):

vλ(σ, λ) = − 8

σ

√
π

2

3∑
k=0

ck(k + 3/2)

2k+3/2Γ (k + 5/2)

×
k∑

j=0

(k + j )!

j!(k − j )!2j

∫ ∞

0

J1(τσ ) cos(τλ) τ k−j+2e−τ dτ. (B 6)

If we consider the identities

sin(τλ) e−τ = Im{e−pτ },
cos(τλ) e−τ = Re{e−pτ },

where p = 1 − iλ, the integrals contained in formulas (B 3)–(B 6) can be transformed
to ∫ ∞

0

J1(τσ ) sin(τλ) τ k−j+1e−τ dτ = Im

{∫ ∞

0

J1(τσ ) τ k−j+1e−pτ dτ

}
,∫ ∞

0

J1(τσ ) cos(τλ) τ k−j+2e−τ dτ = Re

{∫ ∞

0

J1(τσ ) τ k−j+2e−pτ dτ

}
,∫ ∞

0

J0(τσ ) sin(τλ) τ k−je−τ dτ = Im

{∫ ∞

0

J0(τσ ) τ k−je−pτ dτ

}
,∫ ∞

0

J0(τσ ) cos(τλ) τ k−j+1e−τ dτ = Re

{∫ ∞

0

J0(τσ ) τ k−j+1e−pτ dτ

}
.

All these integrals are of the same type and can be computed by means of the general
formula ∫ ∞

0

xm+1e−αxJν(βx) dx = (−1)m+1β−ν dm+1

dαm+1

[
(
√

α2 + β2 − α)ν√
α2 + β2

]

holding when the following inequalities are fulfilled: β > 0, Re{ν} > −m − 2
(Gradshteyn & Ryzhik 1965), which is true in the present case.
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